Three-Dimensional Modeling of Glucose-6-phosphate Dehydrogenase-Deficient Variants from German Ancestry

نویسندگان

  • Farooq Kiani
  • Sonja Schwarzl
  • Stefan Fischer
  • Thomas Efferth
چکیده

BACKGROUND Loss of function of dimeric glucose-6-phosphate dehydrogenase (G6PD) represents the most common inborn error of metabolism throughout the world affecting an estimated 400 million people. In Germany, this enzymopathy is very rare. METHODOLOGY/PRINCIPAL FINDINGS On the basis of G6PD crystal structures, we have analyzed six G6PD variants of German ancestry by three-dimensional modeling. All mutations present in the German population are either close to one of the three G6P or NADP(+) units or to the interface of the two monomers. Two of the three mutated amino acids of G6PD Vancouver are closer to the binding site of NADP(+). The G6PD Aachen mutation is also closer to the second NADP(+) unit. The G6PD Wayne mutation is closer to the G6P binding region. These mutations may affect the binding of G6P and NADP(+) units. Three mutations, i.e. G6PD Munich, G6PD Riverside and G6PD Gastonia, lie closer to the interface of the two monomers. These may also affect the interface of two monomers. CONCLUSION None of these G6PD variants share mutations with the common G6PD variants known from the Mediterranean, Near East, or Africa indicating that they have developed independently. The G6PD variants have been compared with mutants from other populations and the implications for survival of G6PD variants from natural selection have been discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Surveying of the Common Variants of Glucose 6-Phosphate Dehydrogenase Gene in Deficient Patients

Glucose 6-phoshphate dehydrogenase is X-chromosome linked that expressed in all tissues. This is the first enzyme of pentose phosphate pathway were 5-carbon sugar Ribose and NADPH were synthesized by coupled oxidation /reduction reactions and this enzyme is a highly polymorphic enzyme in humans. G6PD deficiency are shown to be the cause of haemolytic effect of Fava beans and primaquine. It soon...

متن کامل

Molecular Identification of the Most Prevalent Mutations of Glucose-6-Posphate Dehydrogenase (G6PD) Gene in Deficient Patients in Khorasan Province of Iran

Glucose-6-phosphate dehydrogenase (G6PD) enzyme catalyses the first step in pentose phosphate pathway (conversion of glucose-6-phosphat to 6-phospho gluconat) which provides cells with pentoses and reduction power in the form of NADPH. In the present study we have analyzed the G6PD gene mutations in 76 patients with a history of favism in Khorasan province in Iran. DNA samples were analyzed for...

متن کامل

Effect of hemolysis and hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient neonates

Objective: Recently, the role of hemolysis in the pathophysiology of hyperbilirubinemia in glucose-6phosphate dehydrogenase  (G6PD)  deficient  neonates  has  been  questioned  and  decreased  bilirubin conjugation has been suggested. We conducted a study to evaluate the effect of hemolysis on these neonates at the 17-Shahrivar Children Hospital in Rasht.  Methods: In  this  cross-sectional  s...

متن کامل

Glucose 6-Phosphate Dehydrogenase Deficiency in Tehran, Zanjan and Sistan-Balouchestan Provinces: Prevalence and Frequency of Mediterranean Variant of G6PD

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an enzymopathy affecting about 400 millionpeople worldwide. The distribution of G6PD deficiency and the molecular genetics of this enzyme vary widelyamong different ethnic groups. The aim of this study was to find out the frequency of G6PD deficiency andcharacterize the Mediterranean type mutation in deficient individuals ...

متن کامل

MOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE

Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007